Binomial Distribution:
X ~ b(n,p)
"The distribution describes the probability of exactly r successes in N trials if the probability of a success in a single trial is p (we sometimes also use q = 1 − p, the probability for a failure, for convenience). It was first presented by Jacques Bernoulli in a work which was posthumously published" (1)
(1) Hand-book on STATISTICAL DISTRIBUTIONS for Experimentalists, by Christian Walck, Published by: Particle Physics Group Fysikum, University of Stockholm
Please email me if you would like a copy of the spreadsheet or want more information. (info@internationalmathematics.org)
| H | I | J | K | L | M | N | O |
| 1 | Binomial Distribution | ||||||
| 2 | X~b(n,p) | x | p | n | nCx | Answer | ROUND (4th) |
| 3 | Formula | 8 | 0.45 | 9 | 9 | ||
| 4 | P(X=x) = (nCx)*p^(x)*(1-p)^(n-x) = | ⇒ | ⇒ | ⇒ | ⇒ | 0.008323487068359 | 0.0083 |
| 5 | For x= (0, 1,2,3....n): p=% of success, n=total # of outcomes (samples). x=# of successes | ||||||
| 6 | Google Sheets Formula = | (=K3*(I3^H3)*(1-I3)^(J3-H3)) | |||||
| 7 | Urn problem WITH replacement | ||||||
| 8 | Google Sheets Function (Basic) | ||||||
| 9 | [=BINOMDIST(x,n,p,FALSE] | ||||||
| 10 | (more google sheets functions - see below) | ||||||
| 11 | |||||||
| 12 | |||||||
| 13 | |||||||
| 14 | Mean | ||||||
| 15 | E[X]=μ = np | ||||||
| 16 | μ = | ⇒ | ⇒ | ⇒ | ⇒ | 4.05 | 4.05 |
| 17 | Google Sheets Formula = | (=J3*I3) | |||||
| 18 | |||||||
| 19 | Variance | ||||||
| 20 | Var = σ^(2) | ||||||
| 21 | σ^(2) = np(1-p) | ||||||
| 22 | σ^(2)= | 2.2275 | 2.2275 | ||||
| 23 | Google Sheets Formula = | (=L16*(1-I3)) | |||||
| 24 | |||||||
| 25 | |||||||
| 26 | Standard Deviation | ||||||
| 27 | St.Dev = √σ | ⇒ | ⇒ | ⇒ | ⇒ | 1.49248115565993 | 1.4925 |
| 28 | Google Sheets Formula = | (=SQRT(L22)) | |||||
| 29 | |||||||
| 30 | |||||||
| 31 | Moment Generating Function | ||||||
| 32 | M(t) = E[e^(tX)] = | ||||||
| 33 | [(e^(t))*p+(1-p)]^(n) | ||||||
| 34 | |||||||
| 35 | E[X] from MGF | ||||||
| 36 | E[X]= ∂{[e^(t)p+(1-p)]^(n)}/∂x |0 = | ||||||
| 37 | np | ⇒ | ⇒ | ⇒ | ⇒ | 4.05 | 4.05 |
| 38 | Google Sheets Formula = | (=L3*K3) | |||||
| 39 | |||||||
| 40 | E[X^(2)] from MGF | ||||||
| 41 | E[X]= ∂^(2){[e^(t)p+(1-p)]^(n)}/∂x^(2) |0 = | ||||||
| 42 | n(n-1)p^(2)+np | ⇒ | ⇒ | ⇒ | ⇒ | 18.63 | 18.63 |
| 43 | Google Sheets Formula = | (=L3*(L3-1)*K3^(2)+L3*K3) | |||||
| 44 | |||||||
| 45 | E[X^(3)] from MGF | ||||||
| 46 | E[X]= ∂^(3){[e^(t)p+(1-p)]^(n)}/∂x^(3) |0 = | ||||||
| 47 | n(n-1)(n-2)p^(3)+3n(n-1)p^(2)+np | ⇒ | ⇒ | ⇒ | ⇒ | 93.717 | 93.717 |
| 48 | Google Sheets Formula = | (=L3*(L3-1)*(L3-2)*(K3^3)+3*L3*(L3-1)*(K3^2)+L3*K3) | |||||
| 49 | |||||||
| 50 | |||||||
| 51 | Third Moment of X about the Mean = | ||||||
| 52 | E[(X-E[X])^(3)]= | ||||||
| 53 | np(1-p)*(1-2p) | ⇒ | ⇒ | ⇒ | ⇒ | 0.22275 | 0.2228 |
| 54 | Google Sheets Formula = | (=(L3*K3)*(1-K3)*(1-2*K3)) | |||||
| 55 | |||||||
| 56 | |||||||
| 57 | Distribution Function | ||||||
| 58 | 0............................................t<0 | ||||||
| 59 | (nCx)*(p^(x))*(1-p)^(n-x) .....0 ≤t ≤ n | ||||||
| 60 | 1..........................................n ≤ t | ||||||
| 61 | (t is integer portion of t) | ||||||
| 62 | |||||||
| 63 | Other Moments/Kurtosis/Etc: | ||||||
| 64 | http://mathworld.wolfram.com/BinomialDistribution.html | ||||||
| 65 | |||||||
| 66 | To Plot Binomial Distribution: | ||||||
| 67 | To Plot Binomial Distrubtion use this link: | ||||||
| 68 | http://www.wolframalpha.com/input/?i=binomial+distribution+%2810%2C+.50%29 | ||||||
| 69 | |||||||
| 70 | Google Sheets Function (All) | ||||||
| 71 | BINOMDIST(num_successes, num_trials, prob_success, cumulative) | ||||||
| 72 | P{X=x} [=BINOMDIST(x,n,p,0)] | ⇒ | ⇒ | ⇒ | ⇒ | 0.008323487068359 | 0.0083 |
| 73 | P{X≤x} [=BINOMDIST(x,n,p,1)] | ⇒ | ⇒ | ⇒ | ⇒ | 0.999243319357422 | 0.9992 |
| 74 | P{X<x} [=BINOMDIST(x-1,n,p,1)] | ⇒ | ⇒ | ⇒ | ⇒ | 0.990919832289063 | 0.9909 |
| 75 | P{X>x} [=1-BINOMDIST(x,n,p,1)] | ⇒ | ⇒ | ⇒ | ⇒ | 0.000756680642578 | 0.0008 |
| 76 | P{X≥x} [=1-BINOMDIST(x-1,n,p,1)] | ⇒ | ⇒ | ⇒ | ⇒ | 0.009080167710937 | 0.0091 |
| 77 | |||||||
| 78 | x<y | ||||||
| 79 | P{x<X<y} [=BINOMDIST(y-1,n,p,1)-[=BINOMDIST(x,n,p,1)] | ||||||
| 80 | P{x<X≤y} [=BINOMDIST(y,n,p,1)-[=BINOMDIST(x,n,p,1)] | ||||||
| 81 | P{x≤X<y} [=BINOMDIST(y-1,n,p,1)-[=BINOMDIST(x-1,n,p,1)] | ||||||
| 82 | P{x≤X≤y} [=BINOMDIST(y,n,p,1)-[=BINOMDIST(x-1,n,p,1)] | ||||||
| 83 | |||||||
| 84 | |||||||
| 85 | |||||||
| 86 | Definition | ||||||
| 87 | A Binomial Distribution is a Bernoulli event that happens many times. | ||||||
| 88 | |||||||
| 89 | A Binomial distribution also only has a “success/failure” outcome, but it is repeated many times. | ||||||
| 90 | •Examples: | ||||||
| 91 | –Probability of getting 7 heads in 40 coin tosses | ||||||
| 92 | –Probability of observing 14 boys of 20 babies | ||||||
| 93 | –Probability of 8 people getting a raise of 30 employees | ||||||
| 94 | |||||||
| 95 |
LINK TO GOOGLE SPREADSHEET - CLICK HERE!
No comments:
Post a Comment