Binomial Distribution:
X ~ b(n,p)
"The distribution describes the probability of exactly r successes in N trials if the probability of a success in a single trial is p (we sometimes also use q = 1 − p, the probability for a failure, for convenience). It was first presented by Jacques Bernoulli in a work which was posthumously published" (1)
(1) Hand-book on STATISTICAL DISTRIBUTIONS for Experimentalists, by Christian Walck, Published by: Particle Physics Group Fysikum, University of Stockholm
Please email me if you would like a copy of the spreadsheet or want more information. (info@internationalmathematics.org)
H | I | J | K | L | M | N | O |
1 | Binomial Distribution | ||||||
2 | X~b(n,p) | x | p | n | nCx | Answer | ROUND (4th) |
3 | Formula | 8 | 0.45 | 9 | 9 | ||
4 | P(X=x) = (nCx)*p^(x)*(1-p)^(n-x) = | ⇒ | ⇒ | ⇒ | ⇒ | 0.008323487068359 | 0.0083 |
5 | For x= (0, 1,2,3....n): p=% of success, n=total # of outcomes (samples). x=# of successes | ||||||
6 | Google Sheets Formula = | (=K3*(I3^H3)*(1-I3)^(J3-H3)) | |||||
7 | Urn problem WITH replacement | ||||||
8 | Google Sheets Function (Basic) | ||||||
9 | [=BINOMDIST(x,n,p,FALSE] | ||||||
10 | (more google sheets functions - see below) | ||||||
11 | |||||||
12 | |||||||
13 | |||||||
14 | Mean | ||||||
15 | E[X]=μ = np | ||||||
16 | μ = | ⇒ | ⇒ | ⇒ | ⇒ | 4.05 | 4.05 |
17 | Google Sheets Formula = | (=J3*I3) | |||||
18 | |||||||
19 | Variance | ||||||
20 | Var = σ^(2) | ||||||
21 | σ^(2) = np(1-p) | ||||||
22 | σ^(2)= | 2.2275 | 2.2275 | ||||
23 | Google Sheets Formula = | (=L16*(1-I3)) | |||||
24 | |||||||
25 | |||||||
26 | Standard Deviation | ||||||
27 | St.Dev = √σ | ⇒ | ⇒ | ⇒ | ⇒ | 1.49248115565993 | 1.4925 |
28 | Google Sheets Formula = | (=SQRT(L22)) | |||||
29 | |||||||
30 | |||||||
31 | Moment Generating Function | ||||||
32 | M(t) = E[e^(tX)] = | ||||||
33 | [(e^(t))*p+(1-p)]^(n) | ||||||
34 | |||||||
35 | E[X] from MGF | ||||||
36 | E[X]= ∂{[e^(t)p+(1-p)]^(n)}/∂x |0 = | ||||||
37 | np | ⇒ | ⇒ | ⇒ | ⇒ | 4.05 | 4.05 |
38 | Google Sheets Formula = | (=L3*K3) | |||||
39 | |||||||
40 | E[X^(2)] from MGF | ||||||
41 | E[X]= ∂^(2){[e^(t)p+(1-p)]^(n)}/∂x^(2) |0 = | ||||||
42 | n(n-1)p^(2)+np | ⇒ | ⇒ | ⇒ | ⇒ | 18.63 | 18.63 |
43 | Google Sheets Formula = | (=L3*(L3-1)*K3^(2)+L3*K3) | |||||
44 | |||||||
45 | E[X^(3)] from MGF | ||||||
46 | E[X]= ∂^(3){[e^(t)p+(1-p)]^(n)}/∂x^(3) |0 = | ||||||
47 | n(n-1)(n-2)p^(3)+3n(n-1)p^(2)+np | ⇒ | ⇒ | ⇒ | ⇒ | 93.717 | 93.717 |
48 | Google Sheets Formula = | (=L3*(L3-1)*(L3-2)*(K3^3)+3*L3*(L3-1)*(K3^2)+L3*K3) | |||||
49 | |||||||
50 | |||||||
51 | Third Moment of X about the Mean = | ||||||
52 | E[(X-E[X])^(3)]= | ||||||
53 | np(1-p)*(1-2p) | ⇒ | ⇒ | ⇒ | ⇒ | 0.22275 | 0.2228 |
54 | Google Sheets Formula = | (=(L3*K3)*(1-K3)*(1-2*K3)) | |||||
55 | |||||||
56 | |||||||
57 | Distribution Function | ||||||
58 | 0............................................t<0 | ||||||
59 | (nCx)*(p^(x))*(1-p)^(n-x) .....0 ≤t ≤ n | ||||||
60 | 1..........................................n ≤ t | ||||||
61 | (t is integer portion of t) | ||||||
62 | |||||||
63 | Other Moments/Kurtosis/Etc: | ||||||
64 | http://mathworld.wolfram.com/BinomialDistribution.html | ||||||
65 | |||||||
66 | To Plot Binomial Distribution: | ||||||
67 | To Plot Binomial Distrubtion use this link: | ||||||
68 | http://www.wolframalpha.com/input/?i=binomial+distribution+%2810%2C+.50%29 | ||||||
69 | |||||||
70 | Google Sheets Function (All) | ||||||
71 | BINOMDIST(num_successes, num_trials, prob_success, cumulative) | ||||||
72 | P{X=x} [=BINOMDIST(x,n,p,0)] | ⇒ | ⇒ | ⇒ | ⇒ | 0.008323487068359 | 0.0083 |
73 | P{X≤x} [=BINOMDIST(x,n,p,1)] | ⇒ | ⇒ | ⇒ | ⇒ | 0.999243319357422 | 0.9992 |
74 | P{X<x} [=BINOMDIST(x-1,n,p,1)] | ⇒ | ⇒ | ⇒ | ⇒ | 0.990919832289063 | 0.9909 |
75 | P{X>x} [=1-BINOMDIST(x,n,p,1)] | ⇒ | ⇒ | ⇒ | ⇒ | 0.000756680642578 | 0.0008 |
76 | P{X≥x} [=1-BINOMDIST(x-1,n,p,1)] | ⇒ | ⇒ | ⇒ | ⇒ | 0.009080167710937 | 0.0091 |
77 | |||||||
78 | x<y | ||||||
79 | P{x<X<y} [=BINOMDIST(y-1,n,p,1)-[=BINOMDIST(x,n,p,1)] | ||||||
80 | P{x<X≤y} [=BINOMDIST(y,n,p,1)-[=BINOMDIST(x,n,p,1)] | ||||||
81 | P{x≤X<y} [=BINOMDIST(y-1,n,p,1)-[=BINOMDIST(x-1,n,p,1)] | ||||||
82 | P{x≤X≤y} [=BINOMDIST(y,n,p,1)-[=BINOMDIST(x-1,n,p,1)] | ||||||
83 | |||||||
84 | |||||||
85 | |||||||
86 | Definition | ||||||
87 | A Binomial Distribution is a Bernoulli event that happens many times. | ||||||
88 | |||||||
89 | A Binomial distribution also only has a “success/failure” outcome, but it is repeated many times. | ||||||
90 | •Examples: | ||||||
91 | –Probability of getting 7 heads in 40 coin tosses | ||||||
92 | –Probability of observing 14 boys of 20 babies | ||||||
93 | –Probability of 8 people getting a raise of 30 employees | ||||||
94 | |||||||
95 |
LINK TO GOOGLE SPREADSHEET - CLICK HERE!
No comments:
Post a Comment