Below is my Google Docs Spreadsheet for Geometric Distributions:
This sheet you cannot change because I have it locked, but if you would like access so you can use my sheet, and just put in your data and get the answer - email me: messenger1964@yahoo.com
| Geometric Distribution | |||||
| x | p | Answer | |||
| Formula | 0 | 0.25 | |||
| p(x) = p(1-p)^(x) = | --> | --> | 0.25 | ||
| where p is the probability of success, 0<p<1 and x = {0,1,2.....} | |||||
| Google Sheets Function | |||||
| [=NEGBINOMDIST(x,1,p)] | --> | --> | 0.25 | ||
| (more google sheets functions - see below) | |||||
| Mean | |||||
| E[X]=μ = (1-p)/p | |||||
| μ = | --> | --> | 3 | ||
| Variance | |||||
| Var = σ^(2) | |||||
| σ^(2) = (1-p)/p^(2) | |||||
| σ^(2)= | --> | --> | 12 | ||
| Standard Deviation | |||||
| St.Dev = √σ | --> | --> | 3.46410161513775 | ||
| Third Moment of X about the Mean = | |||||
| E[(X-E[X])^(3)]= | |||||
| (1-p)*(2-p)/p^(3)= | --> | --> | 84 | ||
| 4th Moment of X about the Mean = | |||||
| E[(X-E[X])^(4)]= | |||||
| (1-p)*(p^(2)-9p+9)/p^(4)= | --> | --> | 1308 | ||
| Moment Generating Function | |||||
| M(t) = E[e^(tX)] = p*(1/((1-e^(t))*(1-p)) | |||||
| p*(1/((1-e^(t))*(1-p)) | |||||
| Distribution Function | |||||
| ∀t < 0 ......F(t) = P{X≤t} =P{X∉R} = 0 | |||||
| ∀t ≥ 0 ......F(t) = P{X≤[t]} = 1-(1-p)^([t]+1) | |||||
| Google Sheets Function (All) | |||||
| BINOMDIST(num_successes, num_trials, prob_success, cumulative) | |||||
| P{X=x} [=NEGBINOMDIST(x,1,p)] | |||||
| P{X≤x} [=NEGBINOMDIST(x,1,p)] | |||||
| P{X<x} [=NEGBINOMDIST(x,1,p)] | |||||
| P{X>x} [=1-NEGBINOMDIST(x,1,p)] | |||||
| P{X≥x} [=1-NEGBINOMDIST(x-1,1,p)] | |||||
| x<y | |||||
| P{x<X<y} [=NEGBINOMDIST(y-1,1,p)-[=NEGBINOMDIST(x,1,p)] | |||||
| P{x<X≤y} [=NEGBINOMDIST(y,1,p)-[=NEGBINOMDIST(x,1,p)] | |||||
| P{x≤X<y} [=NEGBINOMDIST(y-1,1,p)-[=NEGBINOMDIST(x-1,1,p)] | |||||
| P{x≤X≤y} [=NEGBINOMDIST(y,1,p)-[=NEGBINOMDIST(x-1,1,p)] | |||||
No comments:
Post a Comment